

11 May 2012

This publication was produced for review by the United States Agency for International Development. It was

prepared by J.A. Rodriguez Inc. for Chemonics International Inc. The author’s views expressed in this

publication do not necessarily reflect the views of the United States Agency for International Development or

the United States Government.

DATA WAREHOUSE

DEVELOPMENT PRIMER

– MAY 2012

GEORGIA EDUCATION MANAGEMENT PROJECT (EMP)
SHORT-TERM TECHNICAL ASSISTANCE REPORT

Contract No. AID-114-C-09-00001

i Data Warehouse Development Primer – May 2012

Contents

Acronyms .. iv

Introduction ... 1

Designing a Data Warehouse ... 1

Data Mart Design ... 2

Using Dimensional Modeling ... 2

A Data Warehouse Model .. 3

Fact Tables ... 3

Aggregation in Fact Tables ... 4

Aggregation Tables .. 4

Dimension Tables ... 5

Indexes ... 7

Creating the Data Preparation Area .. 7

Data Preparation Area ... 8

Creating the Data Warehouse Database ... 9

Extracting Data from Operational Systems ... 9

Introducing Replication .. 12

Benefits of Replication ... 12

When to Use Replication ... 13

Planning for Replication ... 13

Types of Replication ... 13

Replication Tools .. 14

Implementing Replication .. 14

Replication Options .. 16

Replication Data Considerations .. 18

Administering and Monitoring Replication ... 18

Replication and Heterogeneous Data Sources .. 19

Replication Security ... 19

Enhancing Replication Performance .. 20

ii Data Warehouse Development Primer – May 2012

Set a Minimum Amount of Memory Allocated to SQL Server ... 21

Use a Separate Disk Drive for All Databases Involved in Replication 21

Consider Adding Memory to Servers Used in Replication ... 21

Use Multiprocessor Computers ... 21

Publish Only the Amount of Data Required... 22

Run the Snapshot Agent Only When Necessary and at Off-Peak Times 22

Place the Snapshot Folder on a Drive that Does Not Store Database or Log Files 22

Using a Single Snapshot Folder Per Publication .. 22

Consider Using Compressed Snapshots ... 22

Reduce the Distribution Frequency When Replicating to Numerous Subscribers 23

Consider Pull or Anonymous Subscriptions ... 23

Additional Indexes at the Subscriber ... 24

Application Logic in Triggers at the Subscriber .. 24

Use Horizontal Partitioning Judiciously ... 24

Use a Fast Network .. 24

Reduce the Verbose Level of Replication Agents .. 24

Run Agents Continuously Instead of on Very Frequent Schedules 25

Consider Using the –UseInprocLoader Agent Property ... 25

Backing Up and Restoring Replication Databases ... 25

Backing Up the Publisher ... 26

Backing Up the Distributor ... 27

Backing Up the Subscriber ... 27

Cleansing and Transforming Data .. 27

Loading Data into the Data Warehouse Database .. 28

Preparing Presentation Information .. 30

Using a Data Warehouse ... 30

SQL Queries .. 31

OLAP and Data Mining ... 31

English Query ... 31

Microsoft Office ... 31

Web Access and Reporting .. 32

Offline OLAP Cubes .. 32

iii Data Warehouse Development Primer – May 2012

Third-Party Applications .. 33

Custom Applications .. 33

Maintaining a Data Warehouse ... 33

Updating Data Warehouse Data .. 33

Administering a Data Warehouse .. 34

Tuning Data Warehouse Performance .. 34

Conclusion .. 35

iv Data Warehouse Development Primer – May 2012

Acronyms

EMIS Education Management Information System
EMP Education Management Project
ERC Education Resource Center
GB Gigabyte
GIS Geographic Information System
IRM Information Resources Management
MoES Ministry of Education and Science
MOU Memorandum of Understanding
OLTP On Line Transaction Processing
RAM Random Access Memory
SIS Student Information System
SAN Storage Area Network
SQL Structured Query Language
TB Terabyte
TOR Terms of Reference

1 Data Warehouse Development Primer – May 2012

Introduction
This document should be viewed as a tutorial document for MoES staff to use as a primer to

quickly understand how it should go about the process of creating and maintaining the data

warehouse that is being developed.

Creating a data warehouse is a significant project with a number of steps. The topics in this

document address these steps. They are:

 Designing a Data Warehouse

 Creating the Data Preparation Area

 Creating the Data Warehouse Database

 Extracting Data from Operational Systems

 Cleansing and Transforming Data

 Loading Data into the Data Warehouse Database

 Preparing Presentation Information

 Using a Data Warehouse

 Maintaining a Data Warehouse

Designing a Data Warehouse
The MoES has decided to build a data warehouse instead of an online transaction processing

(OLTP) system due to the nature of how it intends to use the data. Designing a data

warehouse is very different from designing OLTP system. In contrast to an OLTP system in

which the purpose is to capture high rates of data changes and additions, the purpose of a

data warehouse is to organize large amounts of stable data for ease of analysis and

retrieval. Because of these differing purposes, there are many considerations in data

warehouse design that differ from OLTP database design.

Data warehouse data must be organized to meet the purpose of the data warehouse, which

is rapid access to information for analysis and reporting. Dimensional modeling is used in

the design of data warehouse databases to organize the data for efficiency of queries that

are intended to analyze and summarize large volumes of data. The data warehouse schema

is almost always very different and much simpler than the schema of an OLTP system

designed using entity-relation modeling.

Normally, verification tables used in OLTP systems to validate data entry transactions are

not necessary in the data warehouse database. This is because the data warehouse data has

been cleansed and verified before it is posted to the data warehouse database, and

2 Data Warehouse Development Primer – May 2012

historical data is not expected to change frequently once it is in the data warehouse. The

MoES will need to decide if verification tables will be necessary if the systems that will be

providing data to the warehouse do not themselves verify the validity of the data.

Transaction locking considerations, and transactions themselves, play very small roles in

data warehouse databases. OLTP systems specialize in large volumes of data update

transactions. In contrast, data warehouses specialize in rapid retrieval of information from

stable data, and data updates consist primarily of periodic additions of new data.

Backup and restore strategies also differ in a data warehouse from those necessary for an

OLTP system. Much of the data in a data warehouse is unchanging history and does not

need repetitive backup. Backup of new data can be accomplished at the time of update, and

in some situations it is feasible to do these backups from the data preparation database to

minimize performance impact on the data warehouse database. Restore policies for a data

warehouse might also differ from those for an OLTP, depending on how critical it is for the

MoES to have uninterrupted access to data warehouse data.

Data Mart Design
There are two approaches to creating a data warehouse system for an organization. A

central data warehouse can be developed and implemented first with data marts created

later, or data marts can be implemented such that they make up the data warehouse when

their information is joined. In either approach, design must be centralized so that all of the

organization's data warehouse information is consistent and usable. Data marts that adhere

to central design specifications produce reports that are consistent even though the data

resides in different places. For example, a GIS school ID data mart must use the same

numbering schema table arranged in the same way as the SIS data mart or summary

information will be inconsistent between the two. Given that the MoES will be using stand-

alone databases to feed the data warehouse, it should be clear that having consistency

between the differing tables will be paramount.

Using Dimensional Modeling
Entity-relation modeling is often used to create a single complex model of all of the

organization's processes. This approach has proven effective in creating efficient OLTP

systems. In contrast, dimensional modeling creates individual models to address discrete

business processes. For example, student information may go to one model, employee to

another and financial accounts to yet another. Each model captures facts in a fact table and

attributes of those facts in dimension tables linked to the fact table. The schemas produced

by these arrangements are called star or snowflake schemas, and have been proven

effective in data warehouse design.

Dimensional modeling organizes information into structures that often correspond to the

way analysts want to query data warehouse data. For example, the question, "What was the

3 Data Warehouse Development Primer – May 2012

number of dropouts in the Tbilisi district in 2010?" represents the use of three dimensions

(student, geography, time) to specify the information to be summarized.

A Data Warehouse Model
A simple dimensional model of grading information might include a fact table named

Grades_Fact that contains one record for each line item of each student, capturing the

grade received, the course, the school, and the date received. Each of these categories of

information is organized into its own dimension table. Student information is placed in a

Student dimension table, School information in a School dimension table, time and date

information in a Time dimension table, and Course and Grade information in a

Course_Grade dimension table.

In a star schema, each dimension table has a single-part primary key that links to one part of

the multipart primary key in the fact table. In a snowflake schema, one or more dimension

tables are decomposed into multiple tables with the subordinate dimension tables joined to

a primary dimension table instead of to the fact table. In most designs, star schemas are

preferable to snowflake schemas because they involve fewer joins for information retrieval

and are easier to manage. This would be especially true for the MoES given that so many of

the EMISinformation systems will operate in a stand-alone fashion.

Fact Tables
Each data warehouse or data mart includes one or more fact tables. Central to a star or

snowflake schema, a fact table captures the data that measures the organization's

operations. A fact table might contain student related events such as storing attendance

transactions. Fact tables usually contain large numbers of rows, sometimes in the millions of

records when they contain one or more years of history for a large organization such as the

MoES with a school population of over 650,000 students each having attendance taken

several times a day throughout the school year.

A key characteristic of a fact table is that it contains numerical data (facts) that can be

summarized to provide information about the history of the operation of the organization.

Each fact table also includes a multipart index that contains as foreign keys the primary keys

of related dimension tables, which contain the attributes of the fact records. Fact tables

should not contain descriptive information or any data other than the numerical

measurement fields and the index fields that relate the facts to corresponding entries in the

dimension tables.

As an example, one fact table, attendance_fact_2012, might contain the following columns:

4 Data Warehouse Development Primer – May 2012

Column Description

student_id Foreign key for dimension table student.

time_id Foreign key for dimension table time_by_day.

course_id Foreign key for dimension table course.

attendance_id Foreign key for dimension table attendance.

school_id Foreign key for dimension table school.

In this fact table, each entry represents the attendance of a specific student on a specific

day at a specific school.

The most useful measures to include in a fact table are numbers that are additive. Additive

measures allow summary information to be obtained by adding various quantities of the

measure, such as the attendance rate, by grade, at each school, over a particular time

period.

Aggregation in Fact Tables
Aggregation is the process of calculating summary data from detail records. It is often

tempting to reduce the size of fact tables by aggregating data into summary records when

the fact table is created. However, when data is summarized in the fact table, detailed

information is no longer directly available for analysis. If detailed information is needed, the

detail rows that were summarized will have to be identified and located, possibly in the

source system that provided the data, such as the eStudents database. Fact table data

should be maintained at the finest granularity possible. Aggregating data in the fact table

should only be done after considering the consequences.Mixing aggregated and detailed

data in a fact table can cause issues and complications when using the data warehouse and

as such the ministry should refrain from doing this.

Aggregation Tables
Aggregation tables are tables that contain summaries of fact table information. These tables

are used to improve query performance when SQL is used as the query mechanism. OLAP

technology, such as that provided by Microsoft SQL Server Analysis Services, eliminates the

need for such tables. Analysis Services creates OLAP cubes that contain pre-aggregated

summaries so that queries can be answered quickly, regardless of the level of

5 Data Warehouse Development Primer – May 2012

summarization required to answer the query. It is not necessary to create aggregation

tables in the data warehouse when Analysis Services is used to provide presentation

services. Analysis Services creates aggregations as necessary and stores them in tables in the

data warehouse database or in internal multidimensional structures. The MoES will need to

take this into consideration when developing the reporting system.

Dimension Tables
Dimension tables contain attributes that describe fact records in the fact table. Some of

these attributes provide descriptive information; others are used to specify how fact table

data should be summarized to provide useful information for reporting purposes.

Dimension tables contain hierarchies of attributes that aid in summarization. For example, a

dimension containing student information might often contain a hierarchy that separates

students into categories such as grade, sex of student, and age of student.

Dimensional modeling produces dimension tables in which each table contains fact

attributes that are independent of those in other dimensions. For example, a student

dimension table contains data about students, anemployee dimension table contains

information about employees, and a school dimension table contains information about

schools. Queries use attributes in dimensions to specify a view into the fact information. For

example, a query might use the student, school, and time dimensions to ask the question

"What was the number of studentsgraduating in the Batumi region in 2012?" Subsequent

queries might drill down along one or more dimensions to examine more detailed data,

such as "What was the breakdown between males and females?" In these examples, the

dimension tables are used to specify how a measure (graduations) in the fact table is to be

summarized.

Surrogate Keys

It is important that primary keys of dimension tables remain stable. It is strongly

recommended that surrogate keys be created and used for primary keys for all dimension

tables. Surrogate keys are keys that are maintained within the data warehouse instead of

keys taken from source data systems such as eStudents, SIS, or GIS. There are several

reasons for the use of surrogate keys:

 Data tables in various source systems may use different keys for the same entity.

Legacy systems that provide historical data might have used a different numbering

system than a current processing system. A surrogate key uniquely identifies each

entity in the dimension table regardless of its source key. A separate field can be

used to contain the key used in the source system.

Systems developed independently may not use the same keys, or they may use keys

that conflict with data in otherpre-existing systems. This situation may not cause

6 Data Warehouse Development Primer – May 2012

problems where each stand-alone system independently reports summary data, but

it cannot be permitted in the data warehouse where data is consolidated.

 Keys may change or be reused in the source data systems.

This situation is usually less likely than others, but some systems have been known

to reuse keys belonging to obsolete data. However, the key may still be in use in

historical data in the data warehouse, and the same key cannot be used to identify

different entities. This would be the case if the ministry changes between different

standardized tests.

 Changes in organizational structures may move keys in the hierarchy.

This can be a common situation. For example, if an employee is transferred from one

school to another, the ministry may wish to track two things: courses taught data for

the employee prior to the transfer date, and courses taught data for the employee at

the new school after the transfer date. To represent this organization of data, the

employee's record must exist in two places in the employee dimension table, which

is not possible if the employee identification number is used as the primary key for

the dimension table. A surrogate key allows the same person to participate in

different locations in the dimension hierarchy.

In this case, the employee will be represented twice in the dimension table with two

different surrogate keys. These surrogate keys are used to join the employee’s

records to the sets of facts appropriate to the various locations the employee

worked at.

The employee's identification number should be carried in a separate column in the

table so information about the employee can be reviewed or summarized regardless

of the number of times the employee's record appears in the dimension table.

Dimensions that exhibit this type of change are called slowly changing dimensions.

The implementation and management of surrogate keys is the responsibility of the

data warehouse. OLTP systems are rarely affected by these situations, and the

purpose of these keys is to accurately track history in the data warehouse. Surrogate

keys are maintained in the data preparation area during the data transformation

process.

Referential Integrity

Referential integrity must be maintained between all dimension tables and the fact table.

Each fact record contains foreign keys that relate to primary keys in the dimension tables.

Every fact record must have a related record in every dimension table used with that fact

table. Missing records in a dimension table can cause facts to be ignored when the

7 Data Warehouse Development Primer – May 2012

dimension table is joined to the fact table to respond to queries or for the population of

OLAP cubes. Queries can return inconsistent results if records are missing in one or more

dimension tables. Queries that join a defective dimension table to the fact table will exclude

facts whereas queries that do not join the defective dimension table will include those facts.

Shared Dimensions

A data warehouse must provide consistent information for similar queries. One method to

maintain consistency is to create dimension tables that are shared and used by all

components and data marts in the data warehouse. Candidates for shared dimensions

include students, school, employees, and geographical dimensions.

Indexes
Indexes play an important role in data warehouse performance, as they do in any relational

database. Every dimension table must be indexed on its primary key. Indexes on other

columns such as those that identify levels in the hierarchical structure can also be useful in

the performance of some specialized queries.

The fact table must be indexed on the composite primary key made up of the foreign keys of

the dimension tables.

These are the primary indexes needed for most data warehouse applications because of the

simplicity of star and snowflake schemas. Special query and reporting requirements may

indicate the need for additional indexes.

Creating the Data Preparation Area
The MoES will need to create tables and other database objects to support the data

extraction, cleansing, and transformation operations required to prepare the data for

loading into the data warehouse. It can do this by creating a separate database for the data

preparation area, or it can create these items in the data warehouse database. The current

approach that the ministry is taking is to create the item in the data warehouse database

itself.

The data preparation area should include tables to contain the incoming data, tables to aid

in implementing surrogate keys, and tables to hold transformed data. Other tables may be

required for reconciling data from diverse data sources; such tables may contain cross-

reference information to identify common entities such as customer records from systems

that use different keys. A variety of temporary tables may also be needed for intermediate

transformations.

The specific design of the data preparation area will depend on the diversity of data sources,

the degree of transformation necessary to organize the data for data warehouse loading,

and the consistency of the incoming data.

8 Data Warehouse Development Primer – May 2012

Data that is ready to load into the data warehouse should be in tables that have schemas

identical to the target tables in the data warehouse. If not, the data should be ready to load

into the data warehouse tables through a transformation that can be accomplished in a

single step as it is loaded.

The data preparation area should also contain the processes that are used to extract the

data from the data sources, the processes that transform and cleanse the data, and the

processes that load the data to the data warehouse. These processes may be in the form of

SQL queries, stored procedures, Data Transformation Services (DTS) packages, or

documents of manual instructions. As in the development of any database system, the

objective is to automate as much of the process as possible and to manage and maintain the

automated tools developed. Storing and maintaining the transformation processes in the

data preparation area permits the use of standard database backup and restore

mechanisms to preserve them.

Regardless of whether a separate database is used, creating the data preparation area

involves creating tables, views, indexes, DTS packages, and other elements common to

relational databases.

Data Preparation Area
Data to be used in the data warehouse must be extracted from the data sources, cleansed

and formatted for consistency, and transformed into the data warehouse schema. The data

preparation area, sometimes called the data staging area, is a relational database into which

data is extracted from the data sources, transformed into common formats, checked for

consistency and referential integrity, and made ready for loading into the data warehouse

database. The data preparation area and the data warehouse database can be combined in

some data warehouse implementations as long as the cleansing and transformation

operations do not interfere with the performance or operation of serving the end users of

the data warehouse data. Performing the preparation operations in source databases is

rarely an option because of the diversity of data sources and the processing load that data

preparation can impose on online transaction processing systems.

After the initial load of a data warehouse, the data preparation area is used in an ongoing

basis to prepare new data for updating the data warehouse. In most data warehouse

systems, these ongoing operations are performed on a periodic basis, often scheduled to

minimize performance impact on the operational data source systems. The MoES might

wish to consider this on a semester and end of year basis.

The use of a data preparation area that is separated from the data sources and the data

warehouse promotes effective data warehouse management. Attempting to transform data

in the data source systems can interfere with OLTP performance, and many legacy systems

do not have effective or easily implemented transformation capabilities. Reconciliation of

9 Data Warehouse Development Primer – May 2012

inconsistencies in data extracted from various sources can rarely be accomplished until the

data is collected in a common database, at which time data integrity errors can more easily

be identified and rectified.

The data preparation area should isolate raw data from the data warehouse data to

preserve the integrity of the data warehouse and permit it to perform its primary function

of preparing information for presentation and supporting access by clients. If the data

warehouse database is used for data preparation, care should be taken to avoid introducing

errors into the data warehouse data and to minimize the effect of data preparation

processing on the performance of the data warehouse. Many data warehouse database

operations require sophisticated queries and the processing of large amounts of data; data

cleansing can interfere with these operations.

The data preparation area is a relational database that serves as a general work area for the

data preparation operations. It will contain tables that relate source data keys to surrogate

keys used in the data warehouse, tables of transformation data, and many temporary

tables. It will also contain the processes and procedures, such as Data Transformation

Services (DTS) packages, that extract data from source data systems.

Creating the Data Warehouse Database
As already noted, the data warehouse database schema is often quite simple compared to

those of OLTP databases or the data preparation area. A star schema consists of a single fact

table and a number of dimension tables. A snowflake schema adds secondary dimension

tables. More complex data warehouses may contain multiple fact tables and a number of

dimension tables, some of which are common to all fact tables and others that are specific

to a single fact table.

For example, a data warehouse may contain both student information and employee

information. Because student data and employee data are different in nature, they should

be stored in different fact tables. Some dimension tables, such as a school calendar

dimension table, might be common to both students and employees, whereas others might

be specific to individual fact tables.

Extracting Data from Operational Systems
Data that will be used in a data warehouse must be extracted from the operational systems

that contain the source data. Data is initially extracted during the data warehouse creation,

and ongoing periodic extractions occur during updates of the data warehouse. Data

extraction can be a simple operation, if the source data resides in a single relational

database, or a very complex operation, if the source data resides in multiple heterogeneous

10 Data Warehouse Development Primer – May 2012

operational systems. The goal of the data extraction process is to bring all source data into a

common, consistent format so it can be made ready for loading into the data warehouse.

It is better if data in the source operational systems does not contain validation errors. For

example, grade records for which there are no corresponding student records to identify the

who received the grade are clearly errors in the source data, and should be corrected in the

source operational system before the data is extracted for loading into the data warehouse.

The MoES may be able to implement error checking in the source operational system so

such errors can be detected before extracting data for the data warehouse. If such errors

are frequent, the ministry may need to have the operational system examined and modified

to reduce such errors because such errors may affect the organization's ability to function as

well as its data warehouse.

It is possible the MoES will be able to identify validation errors until the data has been

extracted from the operational systems. This situation can occur when data is extracted

from multiple data sources. For example, reconciling data extracted from separate systems

that relate to student data may uncover discrepancies that must be addressed in one or

more of the source systems.

As well, the ministry may also identify inconsistencies other than errors in data after it has

been extracted. For example, different data sources may use different coding systems for

the same kind of data. You can often use translation tables to reconcile these differences

during the extraction operation or later during transformation operations. For example, a

legacy system may code school ID’s using a three-character code, whereas another system

may use a four-character code. The data from one or both of these systems must be

translated into a single set of codes before loading the data into the data warehouse.

In other cases, inconsistencies may be discovered if source systems permit free-form entry

of text information. Such data is often internally inconsistent because different data-entry

personnel may enter the same data in different ways. Inconsistent representations of the

same data must be reconciled if such data is to be used for analysis. For example, in a data

source that permits free-form text entry for the school ID portion of an address, the school

ID entered as 012 or 12. It may be difficult to modify legacy source systems to implement a

standard coding validation. Manual transformation adjustments may be necessary to

reconcile such differences if the contributing source systems cannot be modified.

You can use the powerful transformation capabilities of Data Transformation Services (DTS)

in Microsoft SQL Serverduring the extraction process to reconcile many formatting, data

encoding, and other inconsistencies. Other transformations must be accomplished after the

data has been extracted from the source systems.

Some of the tools available in SQL Server for extracting data are:

 Transact-SQL

11 Data Warehouse Development Primer – May 2012

 Distributed queries

 DTS

 Command line applications

 bcp utility

 BULK INSERT statement for loading from text files

 ActiveX scripts

In some data warehouse implementations, you may also find that you can use Replication to

copy data from source systems to the data preparation area.

Importing data is the process of retrieving data from sources external to Microsoft SQL

Server (for example, a Microsoft Excel file) and inserting it into SQL Server tables. Exporting

data is the process of extracting data from an instance of SQL Server into some user-

specified format (for example, copying the contents of a SQL Server table to a Microsoft

Access database).

Importing data from an external data source into an instance of SQL Server is likely to be the

first step performed after setting up the database. After data has been imported into the

SQL Server database, one can start to work with the database.

Importing data into an instance of SQL Server can be a one-time occurrence (for example,

migrating data from another database system to an instance of SQL Server). After the initial

migration is complete, the SQL Server database is used directly for all data-related tasks,

rather than the original system. No further data imports are required.

Importing data can also be an ongoing task. For example, a new SQL Server database is

created for executive reporting purposes, but the data resides in legacy systems updated

from a large number of stand-alone applications. In this case, one can copy new or updated

data from the legacy system to an instance of SQL Server on a daily or weekly basis.

Usually, exporting data is a less frequent occurrence. SQL Server provides tools and features

that allow applications, such as Access or Microsoft Excel, to connect and manipulate data

directly, rather than having to copy all the data from an instance of SQL Server to the tool

before manipulating it. However, data may need to be exported from an instance of SQL

Server regularly. In this case, the data can be exported to a text file and then read by the

application. Alternatively, one can copy data on an ad hoc basis. For example, data can be

extracted from an instance of SQL Server into an Excel spreadsheet running on a portable

computer and take the computer on a business trip or to be acted on at home.

SQL Server provides tools for importing and exporting data to and from data sources,

including text files, ODBC data sources (such as Oracle databases), OLE DB data sources

(such as other instances of SQL Server), ASCII text files, and Excel spreadsheets.

12 Data Warehouse Development Primer – May 2012

Additionally, SQL Server replication allows data to be distributed across an enterprise,

copying data between locations and synchronizing changes automatically between different

copies of data.

Introducing Replication
Microsoft SQL Server replication is a set of technologies for copying and distributing data

and database objects from one database to another and then synchronizing between

databases for consistency.

Using replication, one can distribute data to different locations, to remote or mobile users

over a local area network, using a dial-up connection, and over the Internet. Replication also

allows the ministry to enhance application performance, physically separate data based on

how it is used (for example, to separate online transaction processing (OLTP) and decision

support systems), or distribute database processing across multiple servers.

Benefits of Replication
Replication offers various benefits depending on the type of replication and the options

chosen, but the common benefit of SQL Server replication is the availability of data when

and where it is needed.

Other benefits include:

 Allowing multiple sites to keep copies of the same data. This is useful when multiple

sites, such as ERC’s, need to read the same data or need separate servers for

reporting applications.

 Separating OLTP applications from read-intensive applications such as online

analytical processing (OLAP) databases, data marts, or data warehouses.

 Allowing greater autonomy. Users can work with copies of data while disconnected

and then propagate changes they make to other databases when they are

connected.

 Scale out of data to be browsed, such as browsing data using Web-based

applications.

 Increasing aggregate read performance.

 Bringing data closer to individuals or groups. This helps to reduce conflicts based on

multiple user data modifications and queries because data can be distributed

throughout the network, and data can be partitioned based on the needs of

different departments or users.

 Using replication as part of a customized standby server strategy. Replication is one

choice for standby server strategy. Other choices include log shipping and failover

clustering, which provide copies of data in case of server failure.

13 Data Warehouse Development Primer – May 2012

When to Use Replication
With organizations supporting diverse hardware and software applications in distributed

environments, it becomes necessary to store data redundantly. Moreover, different

applications have different needs for autonomy and data consistency.

Replication is a solution for a distributed data environment when one needs to:

 Copy and distribute data to one or more sites.

 Distribute copies of data on a scheduled basis.

 Distribute data changes to other servers.

 Allow multiple users and sites to make changes then merge the data modifications

together, potentially identifying and resolving conflicts.

 Build data applications that need to be used in online and offline environments.

 Build Web applications where users can browse large volumes of data.

 Optionally make changes at subscribing sites that are transparently under

transactional control of the Publisher.

Planning for Replication
Careful planning before replication deployment can maximize data consistency, minimize

demands on network resources, and prevent troubleshooting later.

The MoES should consider these areas when planning for replication:

 Whether replicated data needs to be updated, and by whom.

 Data distribution needs regarding consistency, autonomy, and latency.

 The replication environment, including users (especially at remote school sites),

technical infrastructure, network and security, and data characteristics.

 Types of replication and replication options.

 Replication topologies and how they align with the types of replication.

Types of Replication
Microsoft SQL Server provides the following types of replication that can be used

indistributed applications:

 Snapshot replication

 Transactional replication

 Merge replication

Each type provides different capabilities depending on your application, and different levels

of ACID properties (atomicity, consistency, isolation, durability) of transactions and site

autonomy. For example, merge replication allows users to work and update data

autonomously, although ACID properties are not assured. Instead, when servers are

14 Data Warehouse Development Primer – May 2012

reconnected, all sites in the replication topology converge to the same data values.

Transactional replication maintains transactional consistency, but Subscriber (schools or

ERCs) sites are not as autonomous as they are in merge replication because Publishers

(Central Data Center) and Subscribers generally should be connected continuously for

updates to be propagated to Subscribers.

It is possible for the same application to use multiple replication types and options. Some of

the data in the application may not require any updates at Subscribers, some sets of data

may require updates infrequently, with updates made at only one or a few servers, while

other sets of data may need to be updated daily at multiple servers.

Which type of replication is chosen depends on requirements based on distributed data

factors, whether or not data will need to be updated at the Subscriber, the replication

environment, and the needs and requirements of the data that will be replicated. Each type

of replication begins with generating and applying the snapshot at the Subscriber, so it is

important to understand snapshot replication in addition to any other type of replication

and options the ministry intends to choose.

Replication Tools
Microsoft SQL Server provides several methods for implementing and administering

replication, including SQL Server Enterprise Manager, programming interfaces, and other

Microsoft Windows components.

SQL Server Enterprise Manager includes a graphical organization of replication objects,

several wizards, and dialog boxes you can use to simplify the configuration and

administration of replication. SQL Server Enterprise Manager allows one to view and modify

the properties of replication configuration, and monitor and troubleshoot replication

activity.

The ministry can also implement, monitor, and maintain replication using programming

interfaces such as Microsoft ActiveX controls for replication, SQL-DMO, and scripting of

Transact-SQL system stored procedures.

Components such as Windows Synchronization Manager and Active DirectoryServices

enable the MoES to synchronize data, subscribe to publications, and organize and access

replication objects from within Windows applications.

Implementing Replication
The following stages will help the MoES to implement replication, whether using snapshot

replication, transactional replication, or merge replication.

15 Data Warehouse Development Primer – May 2012

Stage Tasks

Configuring Replication Identify the Publisher, Distributor, and Subscribers in your

topology. Use SQL Server Enterprise Manager, SQL-DMO,

or Transact-SQL system stored procedures and scripts to

configure the Publisher, create a distribution database,

and enable Subscribers.

Publishing Data and Database

Objects

Create the publication and define the data and database

object articles in the publication, and apply any necessary

filters to data that will be published.

Subscribing to Publications Create push, pull, or anonymous subscriptions to indicate

what publications need to be propagated to individual

Subscribers and when.

Generating the Initial Snapshot Indicate where to save snapshot files, whether they are

compressed, and scripts to run before or after applying

the initial snapshot.

Specify to have the Snapshot Agent generate the snapshot

one time, or on a recurring schedule.

Applying the Initial Snapshot Apply the snapshot automatically by synchronizing the

subscription using the Distribution Agent or the Merge

Agent. The snapshot can be applied from the default

snapshot folder or from removable media that can be

transported manually to the Subscriber before application

of the snapshot.

Synchronizing Data Synchronizing data occurs when the Snapshot Agent,

Distribution Agent, or Merge Agent runs and updates are

propagated between Publisher and Subscribers.

For snapshot replication, the snapshot will be reapplied at

the Subscriber.

For transactional replication, the Log Reader Agent will

store updates in the distribution database and updates

16 Data Warehouse Development Primer – May 2012

will be propagated to Subscribers by the Distribution

Agent.

If using updatable subscriptions with either snapshot

replication or transactional replication, data will be

propagated from the Subscriber to the Publisher and to

other Subscribers.

For merge replication, data is synchronized during the

merge process when data changes at all servers are

converged and conflicts, if any, are detected and resolved.

Replication Options
Replication options allow the ministry to configure replication in a manner best suited to the

application and environment.

Option

Type of Replication

Benefits

Filtering

Published Data

Snapshot

Replication

Transactional

Replication

Merge Replication

Filters allow you to create vertical and/or horizontal

partitions of data that can be published as part of

replication. By distributing partitions of data to

different Subscribers, one can:

 Minimize the amount of data sent over the

network.

 Reduce the amount of storage space required

at the Subscriber.

 Customize publications and applications based

on individual Subscriber requirements.

 Reduce conflicts because the different data

partitions can be sent to different Subscribers.

Updatable

Subscriptions

(Immediate

Updating,

Queued

Snapshot

Replication

Transactional

Replication

Immediate updating and queued updating options

allow users to update data at the Subscriber and

either propagate those updates to the Publisher

immediately or store the updates in a queue.

Updatable subscriptions are best for replication

17 Data Warehouse Development Primer – May 2012

Updating) topologies where replicated data is mostly read, and

occasionally updated at the Subscriber when

Publisher, Distributor, and Subscriber are connected

most of the time and when conflicts caused by

multiple users updating the same data are infrequent.

Updatable

Subscriptions

(Merge

Replication)

Merge Replication Merge replication allows users to update data at the

Subscriber or Publisher and synchronize changes

continuously, on-demand, or at scheduled intervals.

Merge replication is well suited for topologies where

replicated data is frequently updated at the

Subscriber even when the Subscriber is disconnected

from the Publisher. Conflicts caused by multiple users

updating the same data should be infrequent, but

merge replication provides a rich set of options for

handling conflicts that do occur.

Transforming

Published Data

Snapshot

Replication

Transactional

Replication

One can leverage the data movement, transformation

mapping and filtering capabilities of Data

Transformation Services (DTS) during replication.

With transformable subscriptions, one can:

 Create custom partitions for snapshot and

transactional publications.

 Transform the data as it is being published

with data type mappings (for example, integer

to real data type), column manipulations (for

example, concatenating first name and last

name columns into one), string manipulations,

and functions.

Alternate

Synchronization

Partners

Merge Replication Alternate synchronization partners allow Merge

Subscribers to synchronize data with servers other

than the Publisher at which the subscription

originated. This allows the Subscriber to synchronize

data when the original Publisher is unavailable, and is

also useful for mobile Subscribers that may have

access to a faster or more reliable network

18 Data Warehouse Development Primer – May 2012

connection with an alternate server.

Optimizing

Synchronization

Merge Replication By optimizing synchronization during merge

replication, you can store more information at the

Publisher instead of transferring that information

over the network to the Subscriber. This improves

synchronization performance over a slow network

connection, but requires additional storage at the

Publisher.

Replication Data Considerations
Special considerations should be taken when publishing certain data types and properties.

This section identifies those data types and properties, and it describes solutions for

managing them, including:

 Identity range management. Specifying identity range management can help control

how data modifications are made at different Subscribers during merge replication

or during snapshot or transactional replication with updatable subscriptions.

 Data types with specific uses. Different data types such as uniqueidentifier and

timestamp have specific uses during replication processing, including conflict

resolution when changes to the same data are made at multiple servers.

 NOT FOR REPLICATION. Using the NOT FOR REPLICATION option allows you to

implement ranges of identity values in a partitioned environment. .

Administering and Monitoring Replication
Microsoft SQL Server replication provides tools to administer and monitor replication

agents, replication alerts, and replication processes, ensuring that replication meets the

needs of your organization.

Monitoring replication helps with:

 Setting the agent profiles, schedules, properties, and notifications for replication

agents.

 Viewing and troubleshooting agent activity, including verifying when agents last ran,

monitoring agent activity, and analyzing replication performance.

 Receiving notification through a replication alert when an event occurs on a

replication agent.

 Validating subscriptions to ensure that data values are the same at the Publisher and

at Subscribers.

19 Data Warehouse Development Primer – May 2012

 Reinitializing one or all subscriptions to a publication as needed.

 Managing replication agents from a central location.

Replication and Heterogeneous Data Sources
Microsoft SQL Server offers the ability to replicate data to any heterogeneous data source

that provides a 32-bit ODBC or OLE DB driver on Microsoft Windows operating systems.

Additionally, SQL Server can receive copies of data replicated from Microsoft Access,

Microsoft Exchange, Oracle, DB2 Universal, DB2/MVS, and DB2 AS400, as well as other

formats.

Heterogeneous Subscribers

Publishing to heterogeneous data sources allows organizations that have acquired different

databases to continue providing SQL Server to individuals, schools, or departments using

those databases.

Heterogeneous Publishers

SQL Server can subscribe to snapshot or transactional data replicated from Oracle, DB2,

Access, and other data sources. This allows companies that are planning to deploy large

databases or a data warehouse with SQL Server, or Internet and intranet applications, to

gain access to various sources of data. That data can then be consolidated in SQL Server

using replication, and placed into a data mart, data warehouse, or multidimensional

database designed for SQL Server Analysis Services.

To implement snapshot or transactional replication published by heterogeneous data

sources to SQL Server applications, one would need to configure SQL Server with third-party

software or using applications built with SQL-DMO and the Replication Distributor Interface.

Replication Security
Microsoft SQL Server replication uses a combination of security methods to protect the data

and business logic in an application.

Security Description

Role Requirements By mapping user logins to specific SQL Server roles, SQL Server

allows users to perform only those replication and database

activities authorized for that role. Replication grants certain

permission to the sysadmin fixed server role, the db_owner fixed

database role, the current login, and the public role.

Connecting to the

Distributor

SQL Server provides a secure administrative link between the

Distributor and Publisher. Publishers can be treated as trusted or

20 Data Warehouse Development Primer – May 2012

non-trusted.

Snapshot Folder

Security

With alternate snapshot locations, one can save snapshot files to a

location other than at the Distributor (for example, a network

share, an FTP site, or removable media). When saving snapshots, it

is important to ensure that replication agents have proper

permission to write and read the snapshot files.

Publication Access

Lists

Publication access lists (PALs) allow one to determine which logins

have access to publications. SQL Server creates the PAL with default

logins, but one can add or delete logins from the list.

Agent Login Security SQL Server requires each user to supply a valid login account to

connect to the server. Replication agents are required to use valid

logins when connecting to Publishers, Distributors, and Subscribers.

However, agents can also use different logins and security modes

when connecting to different servers simultaneously.

Password Encryption Passwords used in SQL Server replication are encrypted

automatically for greater security.

Security and

Replication Options

Filtering replicated data can be used to increase data security, and

there are additional security considerations when using dynamic

snapshots, immediate updating, and queued updating.

Security and

Replication Over the

Internet

Different types of replication over the Internet have different

security levels. Additionally, when transferring replication files using

FTP sites, precautions must be taken to secure the site and still

make it accessible to replication agents.

Enhancing Replication Performance
The MoES can enhance the general performance for all types of replication in an application

and on the network by:

 Setting a minimum amount of memory allocated to Microsoft SQL Server.

21 Data Warehouse Development Primer – May 2012

 Using a separate disk drive for the transaction log for all databases involved in

replication.

 Adding memory to servers used in replication.

 Using multiprocessor computers.

 Setting a fixed size for the distribution database.

 Publishing only the amount of data required.

 Running the Snapshot Agent only when necessary and at off-peak times.

 Placing the snapshot folder on a drive not used to store database or log files.

 Using a single snapshot folder per publication.

 Using compressed snapshot files.

 Reducing the distribution frequency when replicating to numerous Subscribers.

 Using of pull or anonymous subscriptions.

 Reduce the verbose level of replication agents to '0' except during initial testing,

monitoring, or debugging.

 Run agents continuously instead of on very frequent schedules.

 Using the –UseInprocLoader agent property.

Set a Minimum Amount of Memory Allocated to SQL Server
By default, SQL Server changes its memory requirements dynamically based on available

system resources. To avoid low memory availability during replication activities, use the min

server memory option to set the minimum available memory. If the server is a remote

Distributor or a combined Publisher and Distributor, oneshould assign it at least 4gigabytes

(GB) of memory.

Use a Separate Disk Drive for All Databases Involved in Replication
This applies to the publication database, the distribution database, and the subscription

database. One can decrease the time it takes to write transactions by storing the log files on

a disk drive different than the one used to store the database. One can mirror that drive,

using a Redundant Array of Inexpensive Disks (RAID)-1, if fault tolerance is required. Use

RAID 0 or 0+1 (depending on need for fault tolerance) for other database files. This is a good

practice regardless of whether or not replication is being used.

Consider Adding Memory to Servers Used in Replication
If there is need to improve replication performance, consider adding memory to the servers

used in replication. For example, if the computer is configured with 16 Gigabytes (GB) of

memory, consider increasing the memory to 64GB or more. One can use the sp_configure

stored procedure to assign additional memory to Microsoft SQL Server.

Use Multiprocessor Computers
SQL Server replication agents can take advantage of additional processors on the server. If

there is high CPU usage, consider installing a faster CPU or multiple CPUs (symmetric

multiprocessing).

22 Data Warehouse Development Primer – May 2012

Publish Only the Amount of Data Required
Because replication is easy to set up, there is a tendency to publish more data than is

actually required. This can consume additional resources within the distribution databases

and snapshot files, and can lower the throughput for required data. Avoid publishing

unnecessary tables and consider updating publications less frequently.

Run the Snapshot Agent Only When Necessary and at Off-Peak Times
The Snapshot Agent bulk copies data from the published table on the Publisher to a file in

the snapshot folder on the Distributor. In SQL Server, the process of generating a snapshot

for transactional replication no longer holds table locks on the published tables. Similarly,

for merge replication in SQL Server, concurrency is improved and lock duration is reduced

when a snapshot is being generated. Although this reduces the impact on concurrently

connected users, generating a snapshot is still a resource intensive process and is best

scheduled during off-peak times.

Place the Snapshot Folder on a Drive that Does Not Store Database or

Log Files
Similarly, the Snapshot Agent will perform a sequential write of data to the snapshot folder

when generating the snapshot for any publication type. Because the snapshot agent always

copies a complete copy of the data in the publication to disk when replicating changes,

placing the snapshot folder on a separate drive from any database or log files reduces

contention among the disks and helps the snapshot process complete faster.

Using a Single Snapshot Folder Per Publication
When specifying the publication properties related to snapshot location, one can choose to

generate snapshot files to the default snapshot folder, to an alternate snapshot folder, or to

both. Generating snapshot files in both locations requires additional processing when the

Snapshot Agent runs. This takes more time than generating the snapshot files to a single

location for the publication.

Consider Using Compressed Snapshots
Compressing snapshot files in the alternate snapshot folder can reduce snapshot disk

storage requirements and, in some cases, improve the performance of transferring snapshot

files across the network when they are used for replication over the Internet. However,

compressing the snapshot requires additional processing by the Snapshot Agent when

generating the snapshot files, and by the merge agent when applying the snapshot files. This

may slow down snapshot generation and increase the time it takes to apply a snapshot in

some cases. Consider these tradeoffs carefully when using compressed snapshots.

23 Data Warehouse Development Primer – May 2012

Reduce the Distribution Frequency When Replicating to Numerous

Subscribers
A single Distributor can distribute transactions to a larger number of Subscribers if the

Distribution and Merge Agents associated with each Subscriber are scheduled to run less

frequently. Stagger when the Distribution Agents or Merge Agents are initially run so they

do not all attempt to start simultaneously the first time they are started. If the agents are

running on a scheduled basis, the schedules are set by default so that the agents are not

running at the same time for regular synchronizations.

Consider Pull or Anonymous Subscriptions
The Distribution or Merge Agent runs on the Distributor for push subscriptions and on

Subscribers for pull or anonymous subscriptions. Using pull or anonymous subscriptions can

increase performance by moving Distribution or Merge Agent processing from the

Distributor to Subscribers.

One can also offload agent processing by using Remote Agent Activation. Agent processing

can be moved to the Subscriber for push subscriptions and to the Distributor for pull

subscriptions. Administration of the agent still takes place at the Distributor for push

subscriptions and at the Subscriber for pull subscriptions. Anonymous subscriptions, which

are especially useful for Internet applications, do not require that information about the

Subscriber be stored in the distribution database at the Distributor for transactional

replication and reduces the storage of information about the Subscriber in the publishing

database for merge replication. This reduces the resource demands on the Publisher and

Distributor because they do not have to maintain information about anonymous

Subscribers.

Anonymous subscriptions are a special category of pull subscriptions. In regular pull

subscriptions, the Distribution or Merge Agent runs at the Subscriber (thereby reducing the

resource demands on the Distributor), but still stores information at the Publisher. When a

publication supports anonymous subscriptions, the publication is configured to always have

a snapshot ready for new Subscribers.

For transactional replication, this means that every time the Snapshot Agent runs, a new

snapshot will be generated. Typically, a snapshot is not generated if there are no new

Subscribers waiting for a snapshot or no Subscriber needs to be reinitialized at the time the

Snapshot Agent is run. So while anonymous Subscribers can reduce the resource demands

at the Distributor, the tradeoff is that a snapshot is generated more often. With merge

replication, a new snapshot is always generated when the Snapshot Agent runs regardless of

the type of subscriptions supported by the publication.

24 Data Warehouse Development Primer – May 2012

Additional Indexes at the Subscriber
If a subscription database needs to be used for decision support analysis and you add a lot

of indexes to support these queries, the MoES should note that these additional indexes

may significantly reduce the throughput with which changes can be applied to the

Subscriber by the Distribution Agent or Merge Agent. In some cases, when aggregating the

data at the Subscriber, it may be more efficient to create an indexed view at the Publisher

and publish it as a table to the Subscriber using transactional replication.

Application Logic in Triggers at the Subscriber
Similarly, additional business logic in user defined triggers at the Subscriber may also slow

down the replication of changes to the Subscriber. For transactional replication, it can be

more efficient to include this logic in custom stored procedures used to apply the replicated

commands.

Use Horizontal Partitioning Judiciously
When a transactional publication is set up with an article(s) that is horizontally partitioned,

the log reader has to apply the filter to each row affected by an update to the table as it

scans the transactions log. The throughput of the log reader will therefore be affected. If

achieving maximum throughput is key, the ministry should consider using DTS custom

partitions to do custom horizontal partitions. That allows the log reader agent to move

transactions out of the published database's log as quickly as possible. Instead of affecting

all Subscribers with the overhead of filtering the data, only the subscriber that chooses to

use a DTS package to filter the data is affected.

Similarly, merge replication must evaluate changed or deleted rows to determine every time

changes are synchronized to determine which Subscribers should receive those rows. When

horizontal partitioning is employed to reduce the subset of data required at a Subscriber,

this processing is more complex and can be slower than when you publish all rows in a

table. Consider carefully the tradeoff between reduced storage requirements at each

subscriber and the need for achieving maximum throughput.

Use a Fast Network
The propagation of changes to the Subscriber can be significantly enhanced by using a very

fast network of 100 Mbps or faster.

Reduce the Verbose Level of Replication Agents
Reduce the –HistoryVerboseLevel parameter and/or the –OutputVerboseLevel parameter

of the Distribution Agents or Merge Agents to the lowest value. This will reduce the amount

of new rows inserted to track agent history and output. Instead, previous history messages

with the same status will be updated to the new history information. Changing this agent

parameter can yield a significant performance gain of up to or over 10 to 15 percent.

25 Data Warehouse Development Primer – May 2012

However, one should increase the –HistoryVerboseLevel for testing, monitoring, and

debugging so that you have as much history information about agent activity as possible.

Run Agents Continuously Instead of on Very Frequent Schedules
Setting the agents to run continuously rather than creating frequent schedules (such as

every minute) will improve replication performance. When the Distribution Agent or Merge

Agent is set to run continuously, whenever changes occur, they will be immediately

propagated to the other servers that are connected in the topology. Because the agent is

continuously running, it does not have to start and stop which causes more work for the

server where the agent is running.

Consider Using the –UseInprocLoader Agent Property
The –UseInprocLoader agent property improves performance of the initial snapshot for

snapshot replication, transactional replication, and merge replication.

When you apply this property to either the Distribution Agent (for snapshot replication or

transactional replication) or the Merge Agent (for merge replication), the agent will use the

in-process BULK INSERT command when applying snapshot files to the Subscriber.

The –UseInprocLoader property cannot be used with character mode bcp, and it cannot be

used by OLE DB or ODBC Subscribers.

Important When using the –UseInprocLoader property, the SQL Server account under

which the Subscriber is running must have read permissions on the directory where the

snapshot .bcp data files are located. When the –UseInprocLoader property is not used, the

agent (for heterogeneous Subscribers) or the ODBC driver loaded by the agent (for SQL

Server Subscribers) reads from the files, so the security context of the Subscriber SQL Server

account is not used.

Backing Up and Restoring Replication Databases
In addition to the regular backup and restore guidelines and procedures for Microsoft SQL

Server, additional considerations for backing up and restoring the databases are involved in

replication.

The considerations for backing up databases used in snapshot replication, transactional

replication, or merge replication vary according to the role the server performs in

replication and where the failure occurs in the replication topology.

To restore replication, back up some or all of the following regularly:

 Publisher

 Distributor

 Subscriber(s)

26 Data Warehouse Development Primer – May 2012

The backup strategy will depend on the need for restoring a replicated environment quickly,

and on the degree of complexity you can tolerate in your backup plan. The MoES only

needs to back up all databases if it wants to restore any replica immediately from backup

while minimizing the likelihood of data loss.

Maintaining a regular backup of the Publisher databases, and leveraging the SQL Server

replication built-in ability to reinitialize one or more subscriptions on-demand provides a

simple recovery strategy. This strategy can be used to support a large enterprise of mobile,

occasionally connected Subscribers that otherwise would not typically participate in regular

backup management at each node in the topology. One could further limit regular backups

to publication databases and rely on SQL Server replication scripting to provide a method

for reestablishing replication if the need to restore the entire replication environment

occurs.

Another strategy includes backing up only the Publisher and the Distributor as long as the

Publisher and Distributor are synchronized. This strategy allows the ministry to restore a

replication environment completely. Backing up a Subscriber is optional but can reduce the

time it takes to recover from a failure of the Subscriber.

Basic backup plans can result in a longer time to restore the replication environment. If an

application requires the need to restore replication immediately, consider more complex

backup and recovery strategies described later in this section.

In most situations, the publications and distribution databases should be backed up after

adding or changing replication objects such as articles and subscriptions, or after a schema

change is made that affects replication. If the distribution database is restored to a version

that is before such a change, the publication database will have to be restored to a version

before that change as well.

As part of any backup strategy, always keep a current script of the replication settings in a

safe location. This should be done in addition to regular backups of the Publisher,

Distributor and the Subscribers. In the event of a total server failure or the need to set up a

test environment, the MoES can modify the script by changing the server name references

and using the script to help recover replication with the previous settings.

The ministry should also script the enabling and disabling of replication. These scripts are

part of the backup of the Publisher or Distributor.

Backing Up the Publisher
Publication databases are the primary or central source, of data in a replication topology;

therefore, even the most basic recovery plan should include regular backups at the

Publisher. Backing up the Publisher requires backing up the publication database regularly

on the server where the Publisher is located. Back up the publication database and then

27 Data Warehouse Development Primer – May 2012

make transaction log backups and/or differential database backups. One can also back up

the master and msdb system databases to protect against total loss of the system and not

just the publication database. If shipping transaction logs to a warm standby server, back up

the msdb system database regularly (which is required if log shipping is used).

Backing Up the Distributor
Backing up the Distributor involves backing up the distribution database, the msdb

database, and the master system database. This allows recovery from almost any type of

failure without having to re-create publications or reconfigure replication.

Backing up the Distributor preserves the snapshot of the publication as well as the history,

error, and replication agent information for applications. It allows one to recover faster in

the event of a Publisher or Distributor failure because there is no need to re-establish

replication. Particularly for transactional replication, this strategy requires coordination

between backing up the publication database and the distribution database. SQL Server

handles this coordination automatically. Back up the distribution database, and then make

transaction log backups and differential database backups.

Backing Up the Subscriber
A comprehensive backup recovery strategy may rely on re-initialization of subscriptions in

the event that recovery is required, or may include regular backups of each subscription

database and relevant system databases at the Subscriber. Backing up the Subscriber

involves backing up the subscription database and, optionally, the msdb and master system

databases. The msdb and master databases need to be backed up only if it is a Subscriber

that uses pull subscriptions and only if there is a need to be able to restore after a total

system loss.

Backup the subscriptions database and then make transaction log backups and incremental

database backups.

Note: Backing up each Subscriber is not required to reestablish replication after a failure.

Under most circumstances, backing up the Publisher and Distributor regularly should be

sufficient. If the cost of reinitializing a Subscriber is significantly greater than the cost of

restoring it from a backup, and the complexity of managing backups among the replicas

within the enterprise is manageable, you should consider backing up the Subscriber.

Cleansing and Transforming Data
The MoES can accomplish many data transformations during the process of extracting data

from the source systems. However, there are often additional tasks to complete before one

can load data into the data warehouse. For example, inconsistent data must be reconciled

from heterogeneous data sources after extraction and complete other formatting and

cleansing tasks. One should also wait until after the extraction process to incorporate

28 Data Warehouse Development Primer – May 2012

surrogate keys. Some transformations that could technically be accomplished during the

extraction process may interfere with the performance or operation of the online source

system; one should defer these tasks until after extraction is complete.

After extraction from the source systems, the data should reside in a data preparation area

where the cleansing and transformations can be completed before the data is loaded into

the data warehouse. The data preparation area can be a separate database or separate

tables in the data warehouse database. During the cleansing and transformation phase, one

can execute procedures to validate and verify data consistency, transform data into

common formats, and incorporate surrogate keys.

The ministry may need to perform manual operations to reconcile data inconsistencies or to

resolve ambiguous text field entries. Each time a manual operation is required, it should try

to identify a way to eliminate the manual step in future data transformation operations. In

some cases, it may be able to modify the source data systems to eliminate the cause at the

source. In other cases, it may be able to establish an automated process that will set aside

unresolved data for later manual exception processing so the bulk of the data can be loaded

into the data warehouse without delay for manual intervention.

Some typical data transformations include:

 Combining multiple name fields into one field.

 Breaking down date fields into separate year, month, and day fields.

 Mapping data from one representation to another, such as TRUE to 1 and FALSE to 0

or postal codes from numeric to text.

 Mapping data from multiple representations to a single representation, such as a

common format for telephone numbers, or different rating codes to a common

"Good, Average, Poor" representation.

 Creating and applying surrogate keys for dimension table records.

Some of the tools available in SQL Serverfor transforming data are:

 Transact-SQL queries

 DTS packages

 Command line applications

 ActiveX scripts

Loading Data into the Data Warehouse Database
After the data has been cleansed and transformed into a structure consistent with the data

warehouse requirements, data is ready for loading into the data warehouse. The MoES may

make some final transformation during the loading operation, although it should complete

any transformations that could identify inconsistencies before the final loading operation.

29 Data Warehouse Development Primer – May 2012

The initial load of the data warehouse consists of populating the tables in the data

warehouse schema and then verifying that the data is ready for use. One can use various

methods to load the data warehouse tables, such as:

 Transact-SQL

 DTS

 bcp utility

When data is loaded data into the data warehouse, one is populating the tables that will be

used by the presentation applications that make the data available to users. Loading data

often involves the transfer of large amounts of data from source operational systems, a data

preparation area database, or preparation area tables in the data warehouse database. Such

operations can impose significant processing loads on the databases involved and should be

accomplished during a period of relatively low system use.

After the data has been loaded into the data warehouse database, verify the referential

integrity between dimension and fact tables to ensure that all records relate to appropriate

records in other tables. One should verify that every record in a fact table relates to a record

in each dimension table that will be used with that fact table.

Data integrity in the reverse order is not necessary. That is, it is not necessary for every

record in a dimension table to relate to a record in the fact table. For example, dimensions

in a student information related data warehouse typically are shared dimensions, which

contain the full sets of students, courses, grades, and so on. A fact table may contain

records for a specific time period during which some students did not register any absences.

Most queries that retrieve data from the data warehouse use inner joins between the fact

and dimension tables. Such queries will ignore facts for which at least one of the joined

dimension tables does not contain a matching record, causing retrieved data to be

inaccurate and possibly inconsistent among different queries.

If dimension tables are used containing data that does not apply to all facts, one must

include a record in the dimension table that can be used to relate to the remaining facts.

To verify referential integrity in a star schema one can use a simple SQL query that counts

the rows returned when all appropriate dimension tables are joined to the fact table using

inner joins. The number of rows returned by this query should match the number of rows in

the fact table. If one is using a snowflake schema, referential integrity should also be

verified between dimension tables and the subordinate tables to which they are linked to

verify that no records in any table are eliminated by inner joins to subordinate tables. One

should perform this verification by starting with the tables at the lowest level of the

snowflake dimension and joining them to the tables at the next higher level, continuing until

the primary dimension table has been verified. This is an important step because there can

be situations in which the dimension may verify correctly against the current fact table,

30 Data Warehouse Development Primer – May 2012

even though some dimension records are missing; these records will be needed when new

facts are added.

Preparing Presentation Information
Because access to data warehouse data is often provided through client applications, there

are often tasks that must be performed in the data warehouse to prepare the information

for presentation to end users. Part of the data warehouse design effort is to identify any

special data configuration requirements necessary for these applications and often to

configure the applications themselves.

Using a Data Warehouse
The traditional role of a data warehouse is to collect and organize historical business data so

it can be analyzed to assist management in making business decisions. Until recently, access

to data warehouses was limited to database experts who could create the sophisticated

queries necessary to retrieve, summarize, and format information for use by analysts and

executive decision makers. As data warehouses become more common and organizations

involve lower levels of management in the decision-making process, the need has become

greater for direct end-user access to data warehouse data by people with minimal database

expertise.

The data warehouse must accommodate the requirements of a continually increasing

variety of applications that access data warehouse data. Most applications must be set up

and initially configured before they can work effectively with a data warehouse, and this

work is often performed or managed by the data warehouse administrator. In some cases

the data warehouse must incorporate modifications in order to meet the requirements of a

new application.

In addition to end-user applications for data access, other applications continue to be

developed that execute within the data warehouse environment to configure and analyze

data in new and powerful ways. Such applications require administration and maintenance

by the data warehouse administrator.

New uses for data warehouse technology are continually being developed. Real-time data

warehouses, once a term with no meaning, are now emerging for use in educational

institutions.

What follows describes how access to a data warehouse takes place.

31 Data Warehouse Development Primer – May 2012

SQL Queries
End users seldom access data warehouse data directly using Structured Query Language

(SQL) queries. Analytical SQL queries can be quite complex, requiring database expertise to

create correctly. The volume of data in a data warehouse is often so large that sophisticated

SQL techniques are needed to achieve useful performance. A SQL query that joins three or

four dimension tables to a fact table containing millions of rows and uses aggregate

functions such as SUM to summarize and group the results can impose a significant load on

any relational database and often yields performance that is not acceptable for online

analysis.

OLAP and Data Mining
Online analytical processing (OLAP) is a technology that uses multidimensional data

representations, called cubes, to provide rapid access to data warehouse data. Cubes model

data in the dimension and fact tables in the data warehouse and provide sophisticated

query and analysis capabilities to client applications.

Data mining uses sophisticated algorithms to analyze data and create models that represent

information about the data. Data mining models can be used to predict characteristics of

new data or to identify groups of data entities that have similar characteristics.

Microsoft SQL Server Analysis Services provides a powerful server and administrative tools

to create and manage OLAP data and serve online client applications. Analysis Services also

incorporates data mining algorithms that can analyze relational data in the data warehouse

database and multidimensional data in cubes.

Cubes and data mining models must be designed, configured, and processed before they

can be used by client applications, and they usually require updating when the data

warehouse data is updated.

English Query
English Query provides a system for developing client applications that enable end users to

access data using English words and phrases. English Query can be used to access data in

the data warehouse database or in cubes created by Microsoft SQL Server Analysis Services.

To develop an English Query application, a model must first be created that relates database

tables, fields, cubes, and data to English words and phrases. An English Query application

can then be generated and incorporated into custom Web or client applications and made

available to end users.

Microsoft Office
Data warehouse data in a SQL Server database can be accessed by Microsoft Office

components such as Microsoft Excel or Microsoft Access. However, the volume of data in

32 Data Warehouse Development Primer – May 2012

most data warehouses often dictates that special queries or data tables be created and

maintained to support the use of these components by end users. Such special queries and

tables must be created and maintained as part of the data warehouse.

One exception is the integration of Excel PivotTables with SQL Server Analysis Services.

When Analysis Services is used to create and manage OLAP data, end users can easily

connect to cubes through an Analysis server and analyze data online or create cubes on

their local computer for offline use.

Web Access and Reporting
Web applications that provide end-user access to data warehouse data are popular because

the client can use a standard Web browser instead of an application that must be installed,

configured, and maintained. Initially limited to simple viewing of data presented on static

Web pages, current technology now enables the creation of sophisticated interactive

applications that allow users to query and update data in data warehouses and cubes.

Microsoft SQL Server and its components, such as Analysis Services and English Query, offer

a number of ways to query and update data over the Web when used with Microsoft

Internet Information Services (IIS). SQL Server supports XML functionality for storing,

retrieving, and updating information using XML, XML-Data Reduced (XDR) schemas, and

XPath queries over HTTP connections. The PivotTable Service component of Analysis

Services can be used with IIS to provide Web access to cubes using Multidimensional

Expressions (MDX) syntax for querying. English Query applications can be embedded into

Active Server Pages (ASP) or COM-based applications to support Web queries in English.

Web data access applications are developed using APIs provided by SQL Server and its

components. Web applications can be as simple as displaying a predefined report or

executing predefined queries against the data warehouse database or OLAP cubes, or they

can be as complex as any directly connected client-server application. The impact of a Web

application on data warehouse design or maintenance is determined by the application.

Offline OLAP Cubes
Cubes used in OLAP provide a multidimensional view of data warehouse data that end users

find easy to use and explore as they search for answers to business questions. Microsoft SQL

Server Analysis Services provides the capability through its PivotTable Service component

for client applications to create subsets of data warehouse cubes and save them locally for

offline analysis. End-user applications can also use PivotTable Service in an offline mode to

create offline cubes directly from relational databases.

Third-party applications and custom applications can use PivotTable Service to create and

manage offline cubes. One end-user application that provides offline cube support is

Microsoft Excel.

33 Data Warehouse Development Primer – May 2012

Offline cubes are created and managed by end-user applications and generally have little

impact on data warehouse or cube design. Maintenance of offline cube data is the

responsibility of the end user, who can refresh data from online cubes or update offline

cubes created from local databases as necessary. Offline cubes do not interfere with normal

data warehouse and cube management and maintenance.

Third-Party Applications
Many applications have been commercially developed for use with data warehouses and

OLAP cubes. Each application has unique requirements that may or may not require design

changes to a data warehouse for effective operation of the application. Some applications

operate on the data warehouse to provide additional analysis, management, or

maintenance capabilities. Others are client applications that provide analysis capabilities for

end users. Commercial applications usually require setup and configuration before they can

use data warehouse data effectively. Applications may also need configuration adjustments

in order to accommodate changes in the data warehouse and updates to data.

Custom Applications
SQL Serverand its components provide a rich set of application programming interfaces

(APIs) that can be used to develop custom applications to enhance and automate data

warehouse administration, or to create client applications tailored to the organization’s

needs.

Maintaining a Data Warehouse
Data warehouses collect and organize historical business data so it can be analyzed to assist

organizations in making decisions. To achieve this purpose, the data warehouse is created

and initially loaded with the existing historical data. It is then periodically updated with new

data from operational data systems. Much of the effort in data warehouse maintenance is

involved with updating the data in the data warehouse, adjusting data presentation

applications to incorporate new data, and updating data marts.

Topics in this section describe common tasks performed to maintain data warehouses.

Updating Data Warehouse Data
Updating data warehouse data includes periodically extracting data from operational

systems, cleansing and transforming the data, and loading the new data into the data

warehouse. Each data update also includes tasks that must be accomplished to synchronize

cubes if they are used for online analytical processing (OLAP), and to update any data marts

that are part of the data warehouse.

The process of extracting, cleansing, and transforming data for a periodic update is

essentially the same as the process used in the initial loading of the data warehouse,

34 Data Warehouse Development Primer – May 2012

although the update process is often much less complex and more automated than the

initial load process. Procedures and automated tasks developed during the initial load

process can reduce the amount of manual effort required during updates. Corrections to

source operational systems identified and implemented during the initial load also reduce

the number of inconsistencies and errors that must be addressed during updates. However,

it is often the case that manual intervention is required during updates to ensure the data is

ready for loading into the data warehouse.

One difference between the initial data load and data updates is that verifying the

referential integrity should be performed incrementally on update data before it is loaded

into the data warehouse and made available to users. Updates often include additions and

changes to dimension tables as well as the addition of rows to the fact tables. The new and

changed data should be checked for internal consistency as well as verified against existing

data in the data warehouse before it is loaded into the data warehouse.

After the update data has been made ready for loading into the data warehouse, one can

use Transact-SQL, Data Transformation Services (DTS), or the bcp utility to update the data

warehouse tables. Depending on the design and implementation of the presentation

applications that provide access to data warehouse data for end users, the MoES may need

to take the data warehouse offline during the update to prevent inconsistencies in query

results.

Administering a Data Warehouse
Administering a data warehouse is both similar to and different from administering an

online transaction processing (OLTP) system. It is similar in that data warehouse data is

stored and maintained in a relational database, so the tools used to administer relational

databases can be used with data warehouses. It is different in that OLTP systems are

generally characterized by high-volume transaction updates to volatile data, whereas data

warehouses are generally characterized by massive amounts of stable historical data. These

differences call for different approaches to data warehouse administrative tasks such as

backing up data and automating recurring tasks.

Tuning Data Warehouse Performance
A data warehouse must provide rapid evaluation of queries that analyze and summarize

huge numbers of rows of data from multiple joined tables. Microsoft SQL Server provides

information you can use to optimize the performance of the relational database that

contains the data warehouse data. Database performance can be affected by many choices

taken in the logical design of the database, its physical implementation, index tuning, query

tuning, and so on.

Although the performance of SQL Server Analysis Services depends to a large extent on the

performance of the data warehouse database, its performance is also influenced by the

35 Data Warehouse Development Primer – May 2012

design of the data warehouse database and the Analysis Services cubes. You can also tune

the performance of Analysis Services by using tools that analyze usage patterns by adjusting

the amount of aggregations that are pre-calculated when cubes are processed, optimizing

cube schemas to avoid unnecessary joins, and so on. Computer hardware configurations

also affect the performance of Analysis servers.

Conclusion
It is hoped this document will provide needed information and guidance to the MoES as it

goes about building out its data warehouse. It should be clear from reading this document

that building an appropriate data warehouse will require a great deal of thought and care by

the organization in order to implement a system that will grow and adapt over time. Any

questions or concerns can be directed to the author at jesse@jesserodriguez.com.

